Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis.

Identifieur interne : 000354 ( Main/Exploration ); précédent : 000353; suivant : 000355

Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis.

Auteurs : Tomoya Kojima [Japon] ; Nobuhide Asakura [Japon] ; Shiori Hasegawa [Japon] ; Taishi Hirasawa [Japon] ; Yuri Mizuno [Japon] ; Daigo Takemoto [Japon] ; Shinpei Katou [Japon]

Source :

RBID : pubmed:31864296

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plants are exposed to various forms of environmental stress. Penetration by pathogens is one of the most serious environmental insults. Wounding caused by tissue damage or herbivory also affects the growth and reproduction of plants. Moreover, wounding disrupts physical barriers present at the plant surface and increases the risk of pathogen invasion. Plants cope with environmental stress by inducing a variety of responses. These stress responses must be tightly controlled, because their unnecessary induction is detrimental to plant growth. In tobacco, WIPK and SIPK, two wound-responsive mitogen-activated protein kinases, have been shown to play important roles in regulating wound responses. However, their contribution to downstream wound responses such as gene expression is not well understood.

RESULTS

To identify genes regulated by WIPK and SIPK, the transcriptome of wounded WIPK/SIPK-suppressed plants was analyzed. Among the genes down-regulated in WIPK/SIPK-suppressed plants, the largest group consisted of those involved in the production of antimicrobial phytoalexins. Almost all genes involved in the biosynthesis of capsidiol, a major phytoalexin in tobacco, were transcriptionally induced by wounding in WIPK/SIPK-dependent and -independent manners. 5-epi-aristolochene synthase (EAS) is the committing enzyme for capsidiol synthesis, and the promoter of EAS4, a member of the EAS family, was analyzed. Reporter gene analysis revealed that at least two regions each 40-50 bp length were involved in activation of the EAS4 promoter by wounding, as well as by artificial activation of WIPK and SIPK. Unlike transcripts of the capsidiol synthesis genes, accumulation of EAS protein and capsidiol itself were not induced by wounding; however, wounding significantly enhanced their subsequent induction by a pathogen-derived elicitor.

CONCLUSIONS

Our results suggest a so-called priming phenomenon since the induction of EAS by wounding is only visible at the transcript level. By inducing transcripts, not the proteins, of EAS and possibly other capsidiol synthesis genes at wound sites, plants can produce large quantities of capsidiol quickly if pathogens invade the wound site, whereas plants can minimize energy loss and avoid the cytotoxic effects of capsidiol where pathogens do not gain entry during wound healing.


DOI: 10.1186/s12870-019-2204-1
PubMed: 31864296
PubMed Central: PMC6925906


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis.</title>
<author>
<name sortKey="Kojima, Tomoya" sort="Kojima, Tomoya" uniqKey="Kojima T" first="Tomoya" last="Kojima">Tomoya Kojima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Asakura, Nobuhide" sort="Asakura, Nobuhide" uniqKey="Asakura N" first="Nobuhide" last="Asakura">Nobuhide Asakura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hasegawa, Shiori" sort="Hasegawa, Shiori" uniqKey="Hasegawa S" first="Shiori" last="Hasegawa">Shiori Hasegawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hirasawa, Taishi" sort="Hirasawa, Taishi" uniqKey="Hirasawa T" first="Taishi" last="Hirasawa">Taishi Hirasawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mizuno, Yuri" sort="Mizuno, Yuri" uniqKey="Mizuno Y" first="Yuri" last="Mizuno">Yuri Mizuno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601</wicri:regionArea>
<wicri:noRegion>464-8601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takemoto, Daigo" sort="Takemoto, Daigo" uniqKey="Takemoto D" first="Daigo" last="Takemoto">Daigo Takemoto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601</wicri:regionArea>
<wicri:noRegion>464-8601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Katou, Shinpei" sort="Katou, Shinpei" uniqKey="Katou S" first="Shinpei" last="Katou">Shinpei Katou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan. shinpei@shinshu-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31864296</idno>
<idno type="pmid">31864296</idno>
<idno type="doi">10.1186/s12870-019-2204-1</idno>
<idno type="pmc">PMC6925906</idno>
<idno type="wicri:Area/Main/Corpus">000317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000317</idno>
<idno type="wicri:Area/Main/Curation">000317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000317</idno>
<idno type="wicri:Area/Main/Exploration">000317</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis.</title>
<author>
<name sortKey="Kojima, Tomoya" sort="Kojima, Tomoya" uniqKey="Kojima T" first="Tomoya" last="Kojima">Tomoya Kojima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Asakura, Nobuhide" sort="Asakura, Nobuhide" uniqKey="Asakura N" first="Nobuhide" last="Asakura">Nobuhide Asakura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hasegawa, Shiori" sort="Hasegawa, Shiori" uniqKey="Hasegawa S" first="Shiori" last="Hasegawa">Shiori Hasegawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hirasawa, Taishi" sort="Hirasawa, Taishi" uniqKey="Hirasawa T" first="Taishi" last="Hirasawa">Taishi Hirasawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mizuno, Yuri" sort="Mizuno, Yuri" uniqKey="Mizuno Y" first="Yuri" last="Mizuno">Yuri Mizuno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601</wicri:regionArea>
<wicri:noRegion>464-8601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Takemoto, Daigo" sort="Takemoto, Daigo" uniqKey="Takemoto D" first="Daigo" last="Takemoto">Daigo Takemoto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601</wicri:regionArea>
<wicri:noRegion>464-8601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Katou, Shinpei" sort="Katou, Shinpei" uniqKey="Katou S" first="Shinpei" last="Katou">Shinpei Katou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan. shinpei@shinshu-u.ac.jp.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Agriculture, Shinshu University, Nagano, 399-4598</wicri:regionArea>
<wicri:noRegion>399-4598</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Phytophthora infestans (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Sesquiterpenes (metabolism)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Phytophthora infestans (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Sesquiterpènes (métabolisme)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Sesquiterpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
<term>Sesquiterpènes</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plants are exposed to various forms of environmental stress. Penetration by pathogens is one of the most serious environmental insults. Wounding caused by tissue damage or herbivory also affects the growth and reproduction of plants. Moreover, wounding disrupts physical barriers present at the plant surface and increases the risk of pathogen invasion. Plants cope with environmental stress by inducing a variety of responses. These stress responses must be tightly controlled, because their unnecessary induction is detrimental to plant growth. In tobacco, WIPK and SIPK, two wound-responsive mitogen-activated protein kinases, have been shown to play important roles in regulating wound responses. However, their contribution to downstream wound responses such as gene expression is not well understood.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>To identify genes regulated by WIPK and SIPK, the transcriptome of wounded WIPK/SIPK-suppressed plants was analyzed. Among the genes down-regulated in WIPK/SIPK-suppressed plants, the largest group consisted of those involved in the production of antimicrobial phytoalexins. Almost all genes involved in the biosynthesis of capsidiol, a major phytoalexin in tobacco, were transcriptionally induced by wounding in WIPK/SIPK-dependent and -independent manners. 5-epi-aristolochene synthase (EAS) is the committing enzyme for capsidiol synthesis, and the promoter of EAS4, a member of the EAS family, was analyzed. Reporter gene analysis revealed that at least two regions each 40-50 bp length were involved in activation of the EAS4 promoter by wounding, as well as by artificial activation of WIPK and SIPK. Unlike transcripts of the capsidiol synthesis genes, accumulation of EAS protein and capsidiol itself were not induced by wounding; however, wounding significantly enhanced their subsequent induction by a pathogen-derived elicitor.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results suggest a so-called priming phenomenon since the induction of EAS by wounding is only visible at the transcript level. By inducing transcripts, not the proteins, of EAS and possibly other capsidiol synthesis genes at wound sites, plants can produce large quantities of capsidiol quickly if pathogens invade the wound site, whereas plants can minimize energy loss and avoid the cytotoxic effects of capsidiol where pathogens do not gain entry during wound healing.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31864296</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>576</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-019-2204-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plants are exposed to various forms of environmental stress. Penetration by pathogens is one of the most serious environmental insults. Wounding caused by tissue damage or herbivory also affects the growth and reproduction of plants. Moreover, wounding disrupts physical barriers present at the plant surface and increases the risk of pathogen invasion. Plants cope with environmental stress by inducing a variety of responses. These stress responses must be tightly controlled, because their unnecessary induction is detrimental to plant growth. In tobacco, WIPK and SIPK, two wound-responsive mitogen-activated protein kinases, have been shown to play important roles in regulating wound responses. However, their contribution to downstream wound responses such as gene expression is not well understood.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">To identify genes regulated by WIPK and SIPK, the transcriptome of wounded WIPK/SIPK-suppressed plants was analyzed. Among the genes down-regulated in WIPK/SIPK-suppressed plants, the largest group consisted of those involved in the production of antimicrobial phytoalexins. Almost all genes involved in the biosynthesis of capsidiol, a major phytoalexin in tobacco, were transcriptionally induced by wounding in WIPK/SIPK-dependent and -independent manners. 5-epi-aristolochene synthase (EAS) is the committing enzyme for capsidiol synthesis, and the promoter of EAS4, a member of the EAS family, was analyzed. Reporter gene analysis revealed that at least two regions each 40-50 bp length were involved in activation of the EAS4 promoter by wounding, as well as by artificial activation of WIPK and SIPK. Unlike transcripts of the capsidiol synthesis genes, accumulation of EAS protein and capsidiol itself were not induced by wounding; however, wounding significantly enhanced their subsequent induction by a pathogen-derived elicitor.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results suggest a so-called priming phenomenon since the induction of EAS by wounding is only visible at the transcript level. By inducing transcripts, not the proteins, of EAS and possibly other capsidiol synthesis genes at wound sites, plants can produce large quantities of capsidiol quickly if pathogens invade the wound site, whereas plants can minimize energy loss and avoid the cytotoxic effects of capsidiol where pathogens do not gain entry during wound healing.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kojima</LastName>
<ForeName>Tomoya</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Asakura</LastName>
<ForeName>Nobuhide</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hasegawa</LastName>
<ForeName>Shiori</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hirasawa</LastName>
<ForeName>Taishi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mizuno</LastName>
<ForeName>Yuri</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takemoto</LastName>
<ForeName>Daigo</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Katou</LastName>
<ForeName>Shinpei</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5379-1422</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan. shinpei@shinshu-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>KAKENHI [grant Nos. 21880020, 23688005, 17K07665]</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>the Program for Dissemination of the Tenure-Track System</GrantID>
<Agency>Ministry of Education and Science, Japan</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012717">Sesquiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1O869T5P54</RegistryNumber>
<NameOfSubstance UI="C081843">capsidiol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012717" MajorTopicYN="N">Sesquiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Disease resistance</Keyword>
<Keyword MajorTopicYN="N">MAPK</Keyword>
<Keyword MajorTopicYN="N">Phytoalexin</Keyword>
<Keyword MajorTopicYN="N">Priming</Keyword>
<Keyword MajorTopicYN="N">Wound</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31864296</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-019-2204-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-019-2204-1</ArticleId>
<ArticleId IdType="pmc">PMC6925906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):1096-122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 May 25;545(7655):487-490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28514447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Oct;4(10):1333-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1283354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1639-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2014 Feb;98:110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24359633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jun;54(6):1005-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23574699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Aug;63(4):599-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Oct 22;163(3):684-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 Feb 28-Mar 6;313(6005):810-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3974711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Jun;25:17-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25909859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Dec;27(12):1318-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jan 29;391(6666):485-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Oct;64(1):114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Jun;8(6):e1002767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 May;28(5):1163-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27102667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Apr;28(4):182-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):678-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20357140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jan;17(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Jan;37(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8720924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Sep;23(9):1130-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Oct 15;70(19):5355-5374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31145794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Aug;26(8):880-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Oct 24;70(20):5895-5908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31294452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1153-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):741-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26666-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Sep;73(9):1962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Feb;17(2):73-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Aug;215(3):1115-1131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28649699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1999 Sep;40(9):993-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Oct;115(2):437-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 2018 Mar 9;38(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29436485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18378893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1999 Jan;79(1):143-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9922370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Mar;48(3):498-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Sep;27(9):2645-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26373453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Jan;10(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002268</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Kojima, Tomoya" sort="Kojima, Tomoya" uniqKey="Kojima T" first="Tomoya" last="Kojima">Tomoya Kojima</name>
</noRegion>
<name sortKey="Asakura, Nobuhide" sort="Asakura, Nobuhide" uniqKey="Asakura N" first="Nobuhide" last="Asakura">Nobuhide Asakura</name>
<name sortKey="Hasegawa, Shiori" sort="Hasegawa, Shiori" uniqKey="Hasegawa S" first="Shiori" last="Hasegawa">Shiori Hasegawa</name>
<name sortKey="Hirasawa, Taishi" sort="Hirasawa, Taishi" uniqKey="Hirasawa T" first="Taishi" last="Hirasawa">Taishi Hirasawa</name>
<name sortKey="Katou, Shinpei" sort="Katou, Shinpei" uniqKey="Katou S" first="Shinpei" last="Katou">Shinpei Katou</name>
<name sortKey="Mizuno, Yuri" sort="Mizuno, Yuri" uniqKey="Mizuno Y" first="Yuri" last="Mizuno">Yuri Mizuno</name>
<name sortKey="Takemoto, Daigo" sort="Takemoto, Daigo" uniqKey="Takemoto D" first="Daigo" last="Takemoto">Daigo Takemoto</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000354 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000354 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31864296
   |texte=   Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31864296" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024